If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2^x3-4x^2-12x-5=1/32
We move all terms to the left:
2^x3-4x^2-12x-5-(1/32)=0
We add all the numbers together, and all the variables
-4x^2+2^x3-12x-5-(+1/32)=0
We add all the numbers together, and all the variables
-4x^2-12x+2^x3-5-(+1/32)=0
We get rid of parentheses
-4x^2-12x+2^x3-5-1/32=0
We multiply all the terms by the denominator
-4x^2*32-12x*32+2^x3*32-1-5*32=0
We add all the numbers together, and all the variables
-4x^2*32-12x*32+2^x3*32-161=0
Wy multiply elements
-128x^2-384x+64x-161=0
We add all the numbers together, and all the variables
-128x^2-320x-161=0
a = -128; b = -320; c = -161;
Δ = b2-4ac
Δ = -3202-4·(-128)·(-161)
Δ = 19968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19968}=\sqrt{256*78}=\sqrt{256}*\sqrt{78}=16\sqrt{78}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-16\sqrt{78}}{2*-128}=\frac{320-16\sqrt{78}}{-256} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+16\sqrt{78}}{2*-128}=\frac{320+16\sqrt{78}}{-256} $
| 7x-(3x-1)=23 | | 7(x-2)-8(x-7)=x+7-(x-2) | | 4p/9+23=47 | | 286.93(0.9738^x)=15 | | 1/3x+1/5=-1(3/4x-3) | | 5n=8=8n-1 | | -7x+6+8x=17-33 | | 0.3t=0.4+0.2t | | 5n-11=13-n | | x²-(x-5)²=10 | | 4(x-8)+7=5(x+2)-3x-35 | | 3+v/2=2.7 | | 2.4=8.7-0.7x | | 70-5x=5 | | 7(x+4)-9=2x+5(3+x) | | 4(x-1)+3x=5x-8 | | 13.60=2g+3.92 | | 14-6x=x+7(2+x) | | 70-5x=45 | | 5.5+1.1x=2.1x | | 3(2x+6)=-50+32 | | x+12=8−3x | | 25-3(7a-12)=-(9a-15)+(7-4a | | 3(m-8)+7=5(m+2)-2m-27 | | b-7=5b=30 | | (5x+4)+(6x-1)=80 | | 5.5+1.1=2.1x | | 4(.5-w)=118 | | 3m-8-3m=-16 | | -4x-2(2x+10)=-106 | | 3x-5=4x+12 | | 4x(x-12)+19=-89 |